スペアナの電子プローブ(バッファアンプ)を作ってみました

今回は久々にちょっとマニアックな話をさせていただきます。

スペアナは信号の周波数分布を見る測定器で、とても便利な測定器です。
本格的なスペアナは普通数百万円と非常に高価なのですが、GHz帯まで観測できて信号レベルも-140dBくらいまで表示出来る優れものです。

speana 020_speana

HPのスペアナ8561E

ただこのスペアナは残念なことにオーディオアンプにはそのままでは使用できません。入力インピーダンスが普通50Ωなので、そのままオーディオアンプ出力に接続すると、ほとんどショートした状態になってしまうからです。スペアナはもともと無線帯域の高周波回路の測定に使用するもので、オーディオ測定には向かないのです。

こういう用途に、電子プローブといって専用の高入力インピーダンスのプローブもあるのですが、これが中古のスペアナ位の価格(うん十万円)なので、おいそれと買えるものではありません。通常はFET1石等を使用して自作している人も多いのが実情です。FETで作ると簡単とはいえ、当然歪が多くなるので歪スペクトルを観測するなどの用途には向きません。何かいいものはないか?と常々思っていましたが、・・・ありました。

speana 010_amp

イヤホンアンプがスペアナのバッファアンプに早変わり

それはこれです。

そう一見ただのヘッドホン(イヤホン)アンプに見えますが、実は

ただのヘッドホン(イヤホン)アンプです(なんじゃそれ)。

これをちょっと改造すると非常に好都合なのです。イヤホン、ヘッドホンはインピーダンスが数十Ωなので、イヤホンアンプを使用すると丁度スペアナの50Ωを問題なく駆動できます。電池駆動でSNが良く、しかも電源ケーブルもいらないのでプローブとして最適です。唯一心配なのは帯域幅ですが、最新のOPアンプを探すと100MHz位まで帯域の伸びたものがゴロゴロしています。2CHあるので、ちょっと定数変更をして左をゲイン1、右をゲイン10にするとさらに便利です。電子プローブというより、スペアナのプリアンプとして使用できます。ここではOPアンプにTI社のLM6172を選択しました。

測定例1(発信器の歪スペクトル)

speana 007_analyzerオーディオアナライザーの元信号の歪スペクトルを見てみましょう。オーディオアナライザーの発信器の波形を歪率計に入れます。高調波歪率は10Khz、1Vで0.0006%と超低歪率です。この状態で歪率計の出力には基本波を除去した歪成分が出ていますので、それをイヤホンアンプ(プリアンプ)を通してスペアナで観測したのがこの波形です。

speana 006_THD

歪成分のスペクトル(0-100KHz) (基本波は歪率計で除去済み)

 

 

 

 

 

 

 

測定例2(アースラインから混入するノイズ)

speana 016_commonmodenise

アースラインから混入するコモンモードノイズ

アースからくるコモン・モード・ノイズを観測してみましょう。プローブの端子をアースして測定電圧を原理的には0にして、電子機器のアース端子に接触させます。そのプローブ出力をバッファアンプ(イヤホンアンプ、ゲイン10)を通して、スペアナ観測した波形がこちらです。アースラインから混入するコモン・モード・ノイズ信号を見ていることになります。それがこちらです。

帯域は0-1MHzで観測していますがベースライン付近に僅かにノイズが混入している事が分かります。

speana 017_baseline

測定系のノイズ (プリアンプ(ポタアン)を通してもノイズは見られない)

 

ちなみに測定系のノイズレベルはこちらで、先ほどのスペクトルは測定系のノイズではありません。

 

 

 

 

このヘッドホンアンプには帯域フィルタが付いているので、帯域を20KHz位で制限するとホワイトノイズが取れて、極微小なリップル成分なども観測できます。

スペアナだけでなく、オシロスコープのプリアンプとして使用するとさらに便利です。オシロスコープは感度が2mV/divで信号を見るには十分なのですが、uVレベルのノイズ波形を見ることはできないのです。このヘッドホンアンプをプリアンプとして使用すると今まで見えなかったノイズ波形が見えてすごく便利です。

このヘッドホンアンプに限らず、乾電池式でOPアンプを使用したポタアンであれば使用できると思いますので、同様の悩みを持っている方は是非お試しいただければと思います。

 

パワートランジスタの今昔

今回はパワーアンプの出力段に使用するパワートランジスタについて解説してみたいと思います。
以前のコラムでパワーアンプの出力段のトランジスタを並列接続しても意味がない、それどころか特性が悪くなると述べました。しかしながら実際にパラ接続にしたら音質が向上したという経験をお持ちの方も多いかもしれません。また、実際そうだったからこそ、パワートランジスタの並列接続を歌い文句にするようになったのだと思います。

ただしこれにはわけがあります。実際昔(20−30年前)のパワートランジスタは特性が必ずしも十分ではなく、貧弱でした。確かに並列接続する必要がありましたし、そのほうが好結果が得られました。ところが最近のオーディオ用に作られたパワートランジスタはAB級100Wくらいなら一つでも十分な特性が得られるものがあります。一言で言うとパワートランジスタ一つで、昔のパワートランジスタ3つ分以上に優れているのです。

表1パワートランジスタの定格比較

最大定格 古典的パワートランジスタ
2SA627
最近のパワートランジスタの例 備考
最大電圧 Vce 80V 230V コレクターエミッタ間電圧
最大電流 Ic 5A 15A コレクタ電流
コレクタ損失 Vce x Ic 60W 150W 無限大放熱器での値
電流増幅率 60 100

表1は30年ほど前の定番のパワートランジスタ2SA627(2SD188とコンプリメンタリー)の特性を最近のパワートランジスタと比較したものです。コレクタ損失(パワートランスタで消費できる最大パワー=コレクターベース間電圧xコレクタ電流)がは60Wから150Wと2.5倍にに大きくなっていることがわかります。また流せる電流値も3倍の15Aになっています。100W8Ωでおよそ最大5Aの電流が流れることになりますが、現在のパワートランジスタでは一個で十分です。電流増幅率に関しては約2倍になっていることに加え、そのコレクタ電流依存性(リニアリティー)も大きく改善されています。

図1.古典的パワートランジスタの電流増幅率

2sa627.jpg

図1のHfe(上に凸の曲線、右目盛り)特性図は、古典的パワーTr2SA627の電流増幅率をコレクター電流の変化に対して示したものです。1Aを過ぎたあたりから増幅率は低下し始め5Aで30と約1/3に低下します。増幅率30という数値はアンプ設計上小さすぎ、増幅段に大電流が流れ始め歪み率が大幅に悪化するため、トランジスタを並列接続する必然性があったといえます。

一方図2は最近のパワートランジスタの電流増幅率特性です。5Aくらいまでは増幅率の低下は20%くらいにおさえられ、かつその値も100近くあるので(実際の使用状態では結構熱くなる)、パワーTr1個で昔のパワーTr3個分以上の働きをしているのです。

図2. 最近のパワートランジスタの電流増幅率特性

2sa1943.jpg
パワートランジスタのパッケージ形状は2x3cm程度ありますが、実際の半導体の面積はせいぜい数mm単位の大きさなので、そもそも大電流に対応したければ半導体の面積を大きくすればよく、実際にそうなってきているのだと思います。後者のトランジスタはHfeのリニアリティー、帰還容量、放熱特性等他の特性も改善されており、もちろん半導体の構造自体にも工夫がされていると思います。

パワートランジスタを並列接続する技術的メリットがあるとすれば、放熱器が大きい場合に熱源が分散されるので方熱効率が良いということくらいです。 それよりも、並列接続によって帰還容量が増え高域特性が悪化すること、配線長が長くなる悪影響がの方が大きいのが実情です。

この様にパワートランジスタの性能は昔に比べると大幅に向上しており、少なくとも「xxパラプッシュプル」という歌い文句をあまり真に受けない方がいいと思います。

以上、パワートランジスタの今昔物語でした。

アンプの内部を考える -プリント基板の考え方-

今回はアンプの構成要素であるプリント基板についてお話したいと思います。

実際にアンプを作る方でないとプリント基板自体にはなじみは無いと思いますが、回路の性能を実現する上で重要な要素です。オーディオ用アンプの基板には新材料を採用したという宣伝文句が歌われている事もあるのですが、首をかしげたくなる内容も多いのです。

オーディオアンプ用プリント基板の不思議(その1)

  • 金メッキの採用

プリント基板は基板材料に銅のパターンが形成されたものです。通常は銅が非常に酸化しやすいので、表面を保護するのと、半田の乗りをよくする目的で、半田が薄くコーティングされています。最近のアンプで基板のパターンに金メッキをしたものを採用しているものがあります。金メッキはスイッチなどでは高品質の証ですので一見いい様に思いますが、そうではないと思います。

確かに金は柔らかく、腐食せず、しかも比較的電気抵抗が小さいということでスイッチ、コネクターの接点には欠かせない材料です。しかしながら、プリント基板に採用するメリットは無いばかりか、結果的に致命的な欠点になる可能性があります。プリント基板では回路の接続は半田付けです。半田メッキの場合に半田の乗りがいいのは明らかです。じつは金メッキにすると、逆に半田の乗りが少し悪くなるのです。実用上支障になるほどではないのですが、半田付けにとってメリットはありません。

まあメリットが無いくらいなら選択肢としてあってもいいのですが、プリント基板設計上やってはいけないことと関係があるのです。

オーディオアンプ用プリント基板の不思議(その2)

  • ベタ塗りの無い基板?

プリント基板設計上、やってはいけない事、それはベタ塗りの無い基板設計です。ベタ塗りの有無というのは必ずしも正式な技術用語ではないのですが、要するにプリント基板のパターン配線以外の不用な部分をアース部として残すか、不要部分をエッチングしてなくしてしまうかの違いです。

例を示すとこんな感じです。

プリント基板ーベタ有りー1.ベタ有りのプリント基板(青い部分が銅のパターン配線がある部分)

プリント基板ーベタなしー 2.ベタ無しのプリント基板

どちらでも回路図上の結線という意味では同じですが、両者の動作はまったく違うと考えています。

数十MHz帯の高周波設計では 1のベタ有りにするのがあたりまえで、そうしないとまともに動作しません。高域が20KHzのオーディオアンプでは必要ないと一見思われますが、20KHzにおいて他の帯域と同様に十分にNFBをかけようとするとMHz帯までの周波数特性が必須です。それに、そもそも小信号増幅用のトランジスタの帯域幅は数百MHzまであるのでベタ塗り部を設けて回路の高周波特性を安定化することは常識なのです。たとえばアマチュア無線分野の方はどんな初心者でも実践しています。

実は2のベタ無しのプリント基板は(その1)の金メッキと関係が有ると勘ぐっています。金メッキの場合、ベタ部があると金の必要面積が多くなるので当然高くなると思います。そこで回路上不要の(本当は必要と思うが)ベタ部をなくしてしまったのではないか?と思うのです。(その1)でも述べたように基板に金メッキをするメリットは私は無いと思います。ましてや、ベタ部をなくすともう高周波で安定動作は望めません。

では2.の基板を採用しているメーカーはどうやってアンプを作っているかといえば、増幅回路の各部に局所帰還をかけて帯域幅を最初から狭くしているのです(と思います)。オーバーオールのNFBが当然少なくなり、高域の歪率が悪化すると思います。2のタイプの金メッキ基板は、ある老舗のオーディオメーカーのフラッグシップモデルに使用されています。しかも、記憶が正しければプリント基板の母材を代え音を良くしたとか、レジスト(半田の防止層)コーティング材を変えて音質を良くしたとか宣伝しています。私に言わせれば基板によって音が変ったとすれば、まず”ベタ部をとってしまったせいではないですか?”といいたいのです。

弊社のプリアンプパワーアンプはもちろんベタ有りの基板で、それだけではなくパターン配線に関しても相当練りに練っています。上図のパターンは実際プリアンプのフラットアンプ基板の図ですが、なんとなくパターンの模様に設計思想の様な物が感じられませんでしょうか?パワーアンプに関しては1年以上プリント基板の最適化に費やしていますし、そうしないと高周波領域の特性を手なずける事ができないのです。

最近、単にパーツに貴金属を使用して音がよくなったと高額な値付けをしている商品が増えすぎているように思います。

本当に必要な改良をして、性能も音質がよくなり、そのためにコストがかかったというのなら分かりますが、こんなに電気の常識を無視した設計をすると、電気の神様の怒りをかうことになるのではないか?と思うくらい怖いことをオーディオ業界ではやっているように思います。

アンプの実装状態での歪率をチェックしてみよう

一般にトランジスタアンプの高調波歪率は0.0x%から0.00x%程度で、音質には必ずしも影響しないと考えられていますが、実際には恐ろしいことが起こっています。アンプの実際の使用状態での歪率特性が1桁以上悪化していることがあるのです。

信号源インピーダンスの影響
実装状態でアンプ歪率に大きな影響を与えるのは信号源のインピーダンスです。下図を見てください。右側がプリアンプ、左側がCDなどの信号源と考えていただければ結構です。信号源とプリアンプの間にはVRが入り、電気信号を分圧してプリアンプに入力します。分圧するだけならいいのですが、同時にVRの直列抵抗のために、等価的に信号源とアンプを接続するインピーダンスが上昇します。例えば100KΩのVRを接続して半分の音量に絞った場合50KΩの抵抗が直列に接続されたことと同じになります。

信号源インピーダンスの影響を調べるブロック図

この様な状態での歪率特性を調べるために、信号源に直列に抵抗を接続した状態で測定してみたのが次のグラフです。左がオーディオデザイン社のディスクリートアンプ、右側が代表的なOPアンプ5532の歪率特性を信号源インピーダンスを変えて調べたものです。

AmpDistCompRs2

信号源インピーダンスが小さい場合(600Ω)には教科書に出て来る様な歪率特性です。高域においてディスクリートアンプの方が優れていることがわかります(もちろんディスクリートアンプであればすべて性能がいいという事ではありません)。しかしながらその差は少しでOPアンプでも十分実用に耐えると考えられます。

ところが信号源インピーダンスが大きくなると(入力にVRを挿入し絞った場合に相当)、事情は一変します。Rs=4.7KΩの場合、OPアンプでは10KHzの歪率がかなり大きくなります。ディスクリートアンプでも若干10KHzが悪化しています。Rs=48KΩではさらに状況はひどくなります。 OPアンプではなんと10KHzの歪率は0.1%に上昇します。これは明らかに音質に影響するでしょう。音が割れるまではいきませんが、高音域がきつく感じられ、全体的に堅い音になると思います。ディスクリートアンプではそこまで悪くなりませんが、やはり多少悪化しています。

信号源インピーダンスが大きくなった場合に歪率が悪化する理由はアンプ初段のFET(Tr)の入力容量の非線形性によるものです。信号源インピーダンスが-側の入力インピーダンス(この場合1K//4.7K=825Ω)に等しい時に歪率が最も小さくなるといわれています。 信号源がCDでアンプがプリアンプの場合もそうですし、プリアンプが信号源でパワーアンプの入力部にVR(アテニュエーター)がついている場合にもこの状況はあてはまります。

よくVRを入れると(音量を絞ると)音質が変わるという方がいますが、その原因はVRそのものの品質ではなく、実はこういったアンプ回路にかかわる問題であることも多いのではないでしょうか?(ほとんどの場合VRのせいにされていますが・・・)

通常アンプの歪率特性はVRを最大にして測定するので、こういった影響は見えてきませんが、実用状態では必ずしも特性が良くない場合があるということに注意すべきでしょう。 また、この信号源インピーダンス依存性をなくす方法は別途紹介したいと思います。

(ほんとうは恐ろしい)実装状態でのアンプの歪率特性

アンプの実装状態での歪率をチェックしてみよう
一般にトランジスタアンプの高調波歪率は0.0x%から0.00x%程度で、音質には必ずしも影響しないと考えられていますが、実際には恐ろしいことが起こっています。アンプの実際の使用状態での歪率特性が1桁以上悪化していることがあるのです。

信号源インピーダンスの影響
実装状態でアンプ歪率に大きな影響を与えるのは信号源のインピーダンスです。下図を見てください。右側がプリアンプ、左側がCDなどの信号源と考えていただければ結構です。信号源とプリアンプの間にはVRが入り、電気信号を分圧してプリアンプに入力します。分圧するだけならいいのですが、同時にVRの直列抵抗のために、等価的に信号源とアンプを接続するインピーダンスが上昇します。
例えば100KΩのVRを接続して半分の音量に絞った場合50KΩの抵抗が直列に接続されたことと同じになります。
amp-comp-cir.jpg

この様な状態での歪率特性を調べるために、信号源に直列に抵抗を接続した状態で測定してみたのが次のグラフです。左がオーディオデザイン社のディスクリートアンプ、右側が代表的なOPアンプ5532の歪率特性を信号源インピーダンスを変えて調べたものです。

ampdistcomprs2.gif

信号源インピーダンスが小さい場合(600Ω)には教科書に出て来る様な歪率特性です。高域においてディスクリートアンプの方が優れていることがわかります(もちろんディスクリートアンプであればすべて性能がいいという事ではありません)。しかしながらその差は少しでOPアンプでも十分実用に耐えると考えられます。
ところが信号源インピーダンスが大きくなると(入力にVRを挿入し絞った場合に相当)、事情は一変します。Rs=4.7KΩの場合、OPアンプでは10KHzの歪率がかなり大きくなります。ディスクリートアンプでも若干10KHzが悪化しています。Rs=48KΩではさらに状況はひどくなります。OPアンプではなんと10KHzの歪率は0.1%に上昇します。これは明らかに音質に影響するでしょう。音が割れるまではいきませんが、高音域がきつく感じられ、全体的に堅い音になると思います。ディスクリートアンプではそこまで悪くなりませんが、やはり多少悪化しています。
信号源インピーダンスが大きくなった場合に歪率が悪化する理由はアンプ初段のFET(Tr)の入力容量の非線形性によるものです。信号源インピーダンスが-側の入力インピーダンス(この場合1K//4.7K=825Ω)に等しい時に歪率が最も小さくなるといわれています。
信号源がCDでアンプがプリアンプの場合もそうですし、プリアンプが信号源でパワーアンプの入力部にVR(アテニュエーター)がついている場合にもこの状況はあてはまります。
よくVRを入れると(音量を絞ると)音質が変わるという方がいますが、その原因はVRそのものの品質ではなく、実はこういったアンプ回路にかかわる問題であることも多いのではないでしょうか?(ほとんどの場合VRのせいにされていますが・・・)
通常アンプの歪率特性はVRを最大にして測定するので、こういった影響は見えてきませんが、実用状態では必ずしも特性が良くない場合があるということに注意すべきでしょう。
また、この信号源インピーダンス依存性をなくす方法は別途紹介したいと思います。